Dear Family,

Family Letter

Content Overview

In this unit of Math Expressions, your child is studying multiplication and division with fractions.

Multiplication tells how many times we are taking a number. For example, when we take $\frac{4}{5}$ of something, we multiply it by $\frac{4}{5}$ to find the answer. In this unit, your child will learn to:

- multiply a whole number by a unit fraction

$$
\frac{1}{b} \cdot w=\frac{w}{b} \quad \frac{1}{3} \cdot 5=\frac{5}{3}
$$

- multiply a whole number by a non-unit fraction

$$
\frac{a}{b} \cdot w=\frac{a \cdot w}{b} \quad \frac{2}{3} \cdot 5=\frac{10}{3}
$$

- multiply two fractions

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d} \quad \frac{2}{3} \cdot \frac{5}{7}=\frac{10}{21}
$$

Division tells us how many of a certain number are inside another number. For example, when we ask how many times $\frac{1}{5}$ fits inside a number, we divide it by $\frac{1}{5}$ to find out. Using the relationship between multiplication and division, your child will discover how to:

- divide a whole number by a whole number

$$
a \div b=a \cdot \frac{1}{b}=\frac{a}{b} \quad 3 \div 4=3 \cdot \frac{1}{4}=\frac{3}{4}
$$

- divide a whole number by a unit $\quad w \div \frac{1}{d}=w \cdot d \quad 6 \div \frac{1}{5}=6 \cdot 5=30$ fraction
- divide a unit fraction by a whole number

$$
\frac{1}{d} \div w=\frac{1}{d} \cdot \frac{1}{w} \quad \frac{1}{2} \div 4=\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8}
$$

Throughout the unit, students will also practice comparing, adding, and subtracting fractions. This helps them maintain what they have learned. It also helps them to see how the various fractional operations are alike and how they are different. It is particularly important for your child to realize that comparing, adding, and subtracting fractions require the denominators to be the same. For multiplying and dividing, this is not true.

If you have any questions about this unit, please call or write to me.

Estimada familia:

Carta a la familia

Un vistazo general al contenido

En esta unidad de Math Expressions su niño está estudiando la multiplicación y la división con fracciones.

La multiplicación nos dice cuántas veces se toma un número. Por ejemplo, cuando tomamos $\frac{4}{5}$ de algo, lo multiplicamos por $\frac{4}{5}$ para hallar la respuesta. En esta unidad su niño aprenderá a:

- multiplicar un número entero por una fracción unitaria

$$
\frac{1}{b} \cdot w=\frac{w}{b} \quad \frac{1}{3} \cdot 5=\frac{5}{3}
$$

- multiplicar un número entero por una fracción no unitaria
- multiplicar dos fracciones

$$
\begin{array}{ll}
\frac{a}{b} \cdot w=\frac{a \cdot w}{b} & \frac{2}{3} \cdot 5=\frac{10}{3} \\
\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d} & \frac{2}{3} \cdot \frac{5}{7}=\frac{10}{21}
\end{array}
$$

La división nos dice cuántas veces cabe un número dentro de otro número. Por ejemplo, cuando preguntamos cuántas veces cabe $\frac{1}{5}$ en un número, dividimos el número entre $\frac{1}{5}$ para saberlo. Al usar la relación entre la multiplicación y la división, su niño va a descubrir cómo:

- dividir un entero entre un entero

$$
a \div b=a \cdot \frac{1}{b}=\frac{a}{b} \quad 3 \div 4=3 \cdot \frac{1}{4}=\frac{3}{4}
$$

- dividir un entero entre una fracción unitaria

$$
w \div \frac{1}{d}=w \times d \quad 6 \div \frac{1}{5}=6 \times 5=30
$$

$\begin{aligned} & \text { - dividir una fracción } \\ & \text { unitaria entre un entero }\end{aligned} \frac{1}{d} \div w=\frac{1}{d} \times \frac{1}{w} \quad \frac{1}{2} \div 4=\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}$
En esta unidad los estudiantes también practicarán comparaciones, y sumas y restas con fracciones. Esto los ayudará a retener lo que han aprendido. También los ayudará a ver las semejanzas y diferencias entre las operaciones con fracciones. Es importante que su niño se dé cuenta de que para comparar, sumar y restar fracciones, las fracciones deben tener el mismo denominador. Esto no aplica para la multiplicación y división.

Si tiene alguna duda o algún comentario, por favor comuníquese conmigo.

Atentamente,

El maestro de su niño

Multiply by a Unit Fraction

Complete.

1. A path around a large park is 8 kilometers long. Alex ran around the path 4 times.

8 taken 4 times $=$ \qquad kilometers
$4 \cdot 8=$ \qquad kilometers
2. Kento ran around the same path $\frac{1}{4}$ time.

8 taken $\frac{1}{4}$ time $=$ \qquad kilometers

8 kilometers

$\frac{1}{4} \cdot 8=$ \qquad kilometers
3. Markers come in boxes of 6 . Alta has 3 boxes. 6 taken 3 times $=$ \qquad markers
$3 \cdot 6=$ \qquad markers
4. Isabel has $\frac{1}{3}$ of a box of 6 markers.

6 taken $\frac{1}{3}$ time $=$ \qquad markers $\frac{1}{3} \cdot 6=$ \qquad markers

$\frac{1}{3}$ group of 6

- Relate Fraction Multiplication and Whole Number Division

Complete each equation chain like the one shown.
$\frac{1}{4}$ of $8=\frac{1}{4} \cdot 8=8 \div 4=\frac{8}{4}=2$
5. $\frac{1}{3}$ of $9=$ \qquad
\qquad $=\quad=$
$=$ \qquad
6. $\frac{1}{7}$ of $21=\square=\square=$
7. $\frac{1}{5}$ of $30=\square=\square=$
8. Which expression does not mean the same thing as the others?
$\frac{1}{6} \cdot 24$
$24 \div 6$
$\frac{24}{6}$
$\frac{6}{24}$
$\frac{1}{6}$ of 24

Discuss Comparison Problems

To prepare for a family gathering, Sara and Ryan made soup.
Sara' made 2 quarts. Ryan made 6 quarts.
You can compare amounts using multiplication and division.
Let r equal the number of quarts Ryan made.
Let s equal the number of quarts Sara made.
Ryan made 3 times as many quarts as Sara.

$$
r=3 \cdot s
$$

Ryan (r)

Sara made one third as many quarts as Ryan.

$$
s=\frac{1}{3} \cdot r \text { or } s=r \div 3
$$

Solve.
Natasha made 12 quarts of soup. Manuel made 3 quarts.
9. Draw comparison bars to show the amount of soup each person made.
10. \qquad made 4 times as many quarts as \qquad
11. \qquad made $\frac{1}{4}$ as many quarts as \qquad
12. Write two multiplication equations that compare the amounts.
$n=$ \qquad $m=$ \qquad
13. Write a division equation that compares the amounts.

Solve Comparison Problems

Solve.

In the gym, 8 girls are standing in one line and 4 boys are standing in another line.
14. Draw comparison bars to compare the number of people in each line.
15. Write two multiplication equations that compare the number of girls (g) to the number of boys (b).
$g=$

$$
b=
$$

\qquad
16. Write a division equation that compares the number of boys (b) to the number of girls (g).
\qquad
17. A collection of coins contains 20 pennies and 4 nickels.

Write two multiplication equations and a division equation that compare the number of pennies (p) and the number of nickels (n).
\qquad
18. A fifth-grade class is made up of 12 boys and 24 girls. How many times as many girls as boys are in the class?
19. Fred has 24 football cards. Scott has $\frac{1}{6}$ as many football cards as Fred. How many football cards does Scott have?

Class Activity

Compare Data in Graphs and Tables

20. How many times as many fish did Bill catch as Amy?
21. How many times as many fish did Amy catch as Bill?
22. What is $\frac{1}{3} \cdot 15$? What is $15 \div 3$? What is $\frac{15}{3}$?

Fish Caught at the Lake

Number of Fish

Write two statements for each pair of players. Use the word times.
23. Compare Gina's points and Brent's points.
\qquad
\qquad
24. Compare Brent's points and Jacob's points.
\qquad
\qquad
25. Compare Jacob's points and Gina's points.
\qquad
\qquad
26. Which are the shortest and longest snakes?

How do you know?
\qquad
\qquad
27. If Speedy is 25 inches long, how long is Lola?

Length of Snakes at the Zoo

Snake	Inches
Speedy	n
Lola	$\frac{1}{5} \cdot n$
Pretzel	$5 \cdot n$

28. If Pretzel is 50 inches long, how long is Speedy? How long is Lola?

Class Activity

Visualize the Separate Steps

Silver City is 24 miles away. Gus has driven $\frac{1}{4}$ of the distance. Emma has driven $\frac{3}{4}$ of the distance.

1. How many miles has Gus driven? \qquad
2. How many miles has Emma driven? \qquad
3. How many times as far as Gus has Emma driven? \qquad

4. If $\frac{1}{5}$ of a distance is 3 km , how far is $\frac{4}{5}$?
5. If $\frac{1}{8}$ of a container weighs 2 pounds, how many pounds is $\frac{3}{8}$ of the container?
6. If $\frac{1}{7}$ of a book is 4 pages, how many pages is $\frac{2}{7}$ of the book? \qquad

Shady Grove is 40 miles away. Middletown is $\frac{1}{5}$ of the way there and Parkview is $\frac{2}{5}$ of the way.
7. How many miles away is Middletown? \qquad
8. How many miles away is Parkview?
9. Ocean City is 42 miles from home. We have gone 35 miles. What fraction of the distance have we gone? \qquad

10. Eagle Rock is 72 miles away. When we had gone $\frac{2}{9}$ of the distance, we stopped for gas. How many miles had we traveled? \qquad
11. Perilous Peak is 80 miles away. We are $\frac{3}{10}$ of the way there. How many more miles do we have to go? \qquad
12. Windy Bay is 48 miles away. Make up your own fraction word problem with multiplication. Be sure to include a non-unit fraction.

VOCABULARY

factor

 productSolve the problem pairs.
13. $\frac{1}{3}$ of $18=$ \qquad
$\frac{2}{3}$ of $18=$ \qquad
14. $\frac{1}{4} \cdot 32=$ \qquad

$$
\frac{3}{4} \cdot 32=
$$

\qquad
15. $\frac{1}{9} \cdot 27=$ \qquad 16. $\frac{1}{6} \cdot 42=$ \qquad

17. Which expression does not have the same value as the others?
$\frac{2}{3} \cdot 21$
$\frac{2}{3}$ of 21
$\left(\frac{1}{3}\right.$ of 21$)+\left(\frac{1}{3}\right.$ of 21$)$
$\frac{2}{3}+21$
$\frac{21}{3}+\frac{21}{3}$
$\left(\frac{1}{3}\right.$ of 21$) \cdot 2$

Use the table to answer each question.
18. Which building is the tallest? Which is the shortest?

How do you know?
\qquad
\qquad
\qquad

Building	Number of Stories
Bank	n
Bus station	$\frac{1}{6} \cdot n$
Sport shop	$\frac{5}{6} \cdot n$
Hotel 5	$6 \cdot n$

Suppose the bus station is 2 stories tall.
19. How many stories does the sport shop have?
20. How many stories does the bank have?

Suppose the bank is 5 stories tall.
21. How many stories tall is the hotel? \qquad
Suppose the hotel is 36 stories tall.
22. How many stories does the bank have? \qquad
23. How many stories does the bus station have? \qquad
24. How many stories does the sport shop have? \qquad

Class Activity

Model the Product $\frac{1}{d} \bullet w$

Farmer Diaz has 3 acres of land. He plows $\frac{1}{5}$ of this land. The number of acres he plows is
$\frac{1}{5}$ of 3 or $\frac{1}{5} \cdot 3$
The diagram at the right shows Farmer Diaz's land divided vertically into 3 acres. The dashed horizontal segments divide the land into five parts. The shaded strip is the $\frac{1}{5}$ of the land Farmer Diaz plowed.

3 acres $=$ 1 acre +1 acre +1 acre

The drawing shows that taking $\frac{1}{5}$ of the 3 acres is the same as taking $\frac{1}{5}$ of each acre and combining them. We can show this mathematically.

$$
\begin{aligned}
\frac{1}{5} \cdot 3 & =\frac{1}{5}(1+1+1) \\
& =\left(\frac{1}{5} \cdot 1\right)+\left(\frac{1}{5} \cdot 1\right)+\left(\frac{1}{5} \cdot 1\right) \\
& =\frac{1}{5}+\frac{1}{5}+\frac{1}{5} \\
& =\frac{3}{5}
\end{aligned}
$$

So $\frac{1}{5}$ of the 3 acres is $\frac{3}{5}$ acre.

1. Farmer Smith has 4 acres of land. She plows $\frac{1}{3}$ of

4 acres = her land. Divide and shade the drawing at the right to show the part of the land she plows.
2. Express $\frac{1}{3} \cdot 4$ as a sum of unit fractions.
 $\frac{1}{3} \cdot 4=$ \qquad
3. What area does Farmer Smith plow? \qquad
4. Farmer Hanson plows $\frac{1}{7}$ of his 2 acres of land. What area does he plow?
5. Olga walks 9 blocks to school. Her friend Louis walks only $\frac{1}{5}$ of that distance. How many blocks does Louis walk to school?

Class Activity

Multiply by a Non-Unit Fraction

6. Which expression does not have the same value as the others?
$\frac{1}{4}$ of $3 \quad \frac{1}{4} \cdot 3$
$4 \cdot \frac{1}{3} \quad \frac{1}{4}+\frac{1}{4}+\frac{1}{4}$
$3 \cdot \frac{1}{4}$

Circle the fractions on the number lines to help you multiply.
7. a. $\frac{1}{7} \cdot 2=$ \qquad

b. $\frac{3}{7} \cdot 2=$ \qquad

8. a. $\frac{1}{5} \cdot 3=$ \qquad

b. $\frac{4}{5} \cdot 3=$ \qquad

9. a. $\frac{1}{6} \cdot 4=$ \qquad

b. $\frac{5}{6} \cdot 4=$ \qquad

10. a. $\frac{1}{3} \cdot 8=$ \qquad

b. $\frac{2}{3} \cdot 8=$ \qquad

Class Activity

Use Bar Models to Multiply Fractions

Miguel explains how to use fraction bars to find $\frac{2}{3} \cdot \frac{4}{5}$:
First, I circle 4 fifths on the fifths fraction bar.

To find $\frac{2}{3}$ of $\frac{4}{5}$, I can circle $\frac{2}{3}$ of each fifth. But, first I have to split each fifth into three parts. After I do this, the bar is divided into fifteenths.

Now, it is easy to circle 2 thirds of each of the 4 fifths.

Each group I circled has 2 fifteenths, so I circled 4 groups of 2 fifteenths. That's 8 fifteenths in all. So, $\frac{2}{3} \cdot \frac{4}{5}=\frac{8}{15}$.

1. Use the sixths bar below to model $\frac{3}{4} \cdot \frac{5}{6}$.
$\frac{3}{4} \cdot \frac{5}{6}=$ \qquad

Sixths \square
2. Use the sevenths bar below to model $\frac{2}{3} \cdot \frac{4}{7}$.

Class Activity

- Use Area Models to Multiply Fractions

Jessie knows that the area of a rectangle is its length times its width. She explains how to use this idea to model $\frac{2}{3} \cdot \frac{4}{5}$:
I need to draw a rectangle with side lengths $\frac{2}{3}$ unit and $\frac{4}{5}$ unit.

I start with a unit square and divide it vertically into fifths. Then I shade $\frac{4}{5}$.

Next, I divide the square horizontally into thirds, and shade $\frac{2}{3}$.

The overlapping part is a rectangle with side lengths $\frac{2}{3}$ unit and $\frac{4}{5}$ unit. So, its area is $\frac{2}{3} \cdot \frac{4}{5}$ square units. To find this area, I noticed the following:

- There are $3 \cdot 5$, or 15 , identical small rectangles inside the unit square. Each one is $\frac{1}{15}$ square unit, so it represents the unit fraction $\frac{1}{15}$.
- There are $2 \cdot 4$, or 8 , of these unit-fraction rectangles inside the $\frac{2}{3}$ by $\frac{4}{5}$ rectangle.
So the area of the overlapping region is $8 \cdot \frac{1}{15}$, or $\frac{8}{15}$ square units.
This means $\frac{2}{3} \cdot \frac{4}{5}=\frac{8}{15}$.
Divide and shade the unit square to make an area model for the multiplication. Then find the product.

3. $\frac{1}{2} \cdot \frac{3}{8}=$ \qquad
4. $\frac{3}{4} \cdot \frac{2}{3}=$
5. $\frac{5}{6} \cdot \frac{1}{3}=$

Practice Multiplying Fractions
Find the product. You do not need to simplify your answer.
6. $\frac{1}{7} \cdot 6=$ \qquad 7. $5 \cdot \frac{1}{4}=$ \qquad 8. $\frac{2}{3} \cdot 9=$ \qquad
9. $4 \cdot \frac{3}{8}=$ \qquad 10. $\frac{1}{9} \cdot \frac{1}{2}=$ \qquad 11. $\frac{1}{3} \cdot \frac{1}{4}=$ \qquad
12. $\frac{2}{5} \cdot \frac{1}{3}=$ \qquad 13. $\frac{5}{6} \cdot \frac{3}{4}=$ \qquad 14. $\frac{3}{7} \cdot \frac{1}{3}=$ \qquad
15. $\frac{7}{10} \cdot \frac{7}{10}=$ \qquad 16. $\frac{3}{4} \cdot \frac{6}{11}=$ \qquad 17. $\frac{7}{8} \cdot \frac{8}{9}=$ \qquad

18. $\frac{4}{5} \cdot \frac{4}{5}=$ \qquad 19. $\frac{2}{7} \cdot \frac{4}{9}=$ \qquad 20. $\frac{4}{7} \cdot \frac{2}{9}=$ \qquad
 \qquad 22. $\frac{1}{10} \cdot \frac{1}{10}=$ \qquad 23. $6 \cdot \frac{2}{3}=$ \qquad 25. $\frac{7}{10} \cdot \frac{2}{7}=$ \qquad 26. $\frac{2}{5} \cdot 12=$ \qquad

\qquad 28. $\frac{1}{5} \cdot 5=$ \qquad 29. $\frac{6}{7} \cdot \frac{7}{8}=$ \qquad

Name Date

Fraction Word Problems

Represent the problem with an equation. Then solve.

30. Of the 304 people who attended the school play, $\frac{5}{8}$ were students. How many of the people who attended were students?
31. One lap around the track is $\frac{1}{4}$ mile. Abby ran around the track 13 times. How far did she run?
32. Cam is filling his bathtub. The tub holds 32 gallons of water. It is now $\frac{4}{7}$ full. How many gallons of water are in the tub?
33. One third of the campers at a summer camp signed up for an arts-and-crafts class. Of these campers, one fifth signed up for woodworking. What fraction of the campers signed up for woodworking?
34. Two thirds of the students in the orchestra play string instruments. Half of the students who play string instruments play violins. What fraction of all the students in the orchestra play violins?
35. Ms. Hernandez knitted a scarf for her grandson. The scarf is $\frac{5}{6}$ yard long and $\frac{2}{9}$ yard wide. What is the area of the scarf?

Simplify and Multiply Fractions

Multiply. Simplify first if you can.

1. $\frac{2}{3} \cdot 30=$ \qquad 2. $\frac{2}{5} \cdot 35=$
2. $\frac{7}{16} \cdot 8=$ \qquad
3. $\frac{5}{6} \cdot 4=$ \qquad
\qquad
4. $\frac{7}{20} \cdot \frac{5}{14}=$ \qquad 6. $\frac{2}{16} \cdot \frac{4}{21}=$ \qquad
5. $\frac{9}{10} \cdot \frac{7}{10}=$ \qquad 8. $\frac{7}{15} \cdot \frac{10}{21}=$ \qquad
6. $\frac{5}{24} \cdot \frac{6}{25}=$ \qquad 10. $\frac{5}{8} \cdot \frac{32}{45}=$
7. $\frac{8}{49} \cdot \frac{7}{10}=$ \qquad 12. $\frac{7}{25} \cdot \frac{3}{4}=$ \qquad
8. Which fraction is not equivalent to the others?
$\begin{array}{lll}\frac{3}{9} & \frac{1}{3} & \frac{8}{24}\end{array}$
$\frac{10}{30}$
$\frac{6}{18}$
$\frac{9}{36}$
$\frac{20}{60}$

- Solve Word Problems

Write an equation. Then solve.
Show'your work.
14. In the Fireside Ski Shop, $\frac{11}{28}$ of the ski caps have tassels. Of the caps with tassels, $\frac{7}{11}$ are blue. What fraction of the caps in the shop are blue with tassels?
15. In the shop, $\frac{27}{32}$ of the jackets have zippers. Of the jackets with zippers, $\frac{8}{9}$ have hoods. What fraction of the jackets in the shop have both zippers and hoods?
16. Five of the 16 workers in the shop know how to ski. $\frac{1}{5}$ of those who can ski know how to snowboard. What fraction of the workers can ski and snowboard?

Class Activity

What's the Error?

Dear Math Students,
I multiplied $\frac{7}{12} \bullet \frac{3}{4}$, but I think my answer is wrong. When you take a fraction of a fraction, you should get a smaller fraction. But my answer is larger. What mistake did I make? How do I correct it?

$$
\frac{7}{12} \cdot \frac{3}{4}=\frac{21}{3}=7
$$

Your friend,

Puzzled Penguin
17. Write a response to Puzzled Penguin:
\qquad
\qquad
\qquad

Write Word Problems
Write a word problem that can be represented by the multiplication. Give the solution to your problem.
18. $\frac{3}{4} \cdot 8=x$
\qquad
\qquad
19. $\frac{8}{15} \cdot \frac{5}{12}=x$
\qquad
\qquad
\qquad

- Area Model for Mixed-Number Multiplication

A farmer has a rectangular field $1 \frac{2}{3}$ miles long and $\frac{3}{4}$ mile wide.
What is the area of the field?
Melinda knows the area is $1 \frac{2}{3} \cdot \frac{3}{4}$. She explains how she makes an area model to find this product:
I need to make a rectangle with side lengths $1 \frac{2}{3}$ units and $\frac{3}{4}$ unit.
I start with 2 unit squares because one side of my rectangle will have a length greater than 1 unit.

I shade $\frac{3}{4}$ vertically in red. Horizontally, I shade 1 square and $\frac{2}{3}$ of another in blue. The overlap has an area of $1 \frac{2}{3} \cdot \frac{3}{4}$, but I can't tell what this area is.

I divide the top square horizontally into thirds too. So, $\frac{5}{3}$ is shaded horizontally. Now, I can see that each unit square is divided into twelfths.

There are 15 twelfths in the overlap, so $1 \frac{2}{3} \cdot \frac{3}{4}=\frac{15}{12}$,
 which is $1 \frac{1}{4}$. The area of the field is $1 \frac{1}{4}$ miles.

When I rewrite the factor $1 \frac{2}{3}$ as a fraction, I can see that the product is the product of the numerators over

$$
1 \frac{2}{3} \cdot \frac{3}{4}=\frac{5}{3} \cdot \frac{3}{4}=\frac{15}{12}=\frac{5}{4}=1 \frac{1}{4}
$$ the product of the denominators.

Discuss this model for $1 \frac{2}{5} \cdot 1 \frac{1}{2}$ with your partner. Then answer the questions.

1. What unit fraction does each of the smallest rectangles represent?

2. How many unit-fraction rectangles are in the overlap?
3. Express the product of $1 \frac{2}{5} \cdot 1 \frac{1}{2}$ as a fraction and as a mixed number.

4. Rewrite $1 \frac{2}{5} \cdot 1 \frac{1}{2}$ as a product of fractions. Is the product equal to the product of the numerators over the product of the denominators?

Name

Practice Multiplying Mixed Numbers

Find each product by first rewriting each mixed number as a fraction.
5. $\frac{5}{6} \cdot 1 \frac{1}{3}=$ \qquad 6. $3 \frac{2}{3} \cdot 7=$
8. $4 \frac{1}{2} \cdot \frac{4}{5}=$ \qquad
9. $\frac{7}{8} \cdot 1 \frac{2}{5}=$ \qquad 10. $5 \cdot 1 \frac{7}{10}=$ \qquad
\qquad
7. $1 \frac{3}{4} \cdot 2 \frac{1}{4}=$ \qquad
\qquad 12. $\frac{1}{12} \cdot 2 \frac{2}{9}=$
11. $1 \frac{2}{3} \cdot 1 \frac{2}{3}=$ \qquad

Solve Word Problems

Represent the problem with an equation. Then solve.
Draw a diagram if you need to.
13. Sara built a pen for her pet rabbits. The pen measures $2 \frac{5}{6}$ yards by $1 \frac{1}{2}$ yards. What is the area of the pen?
14. At Southtown High School, the number of students in band is $1 \frac{3}{4}$ times the number in orchestra. If 56 students are in orchestra, how many are in band?
15. A bucket holds $2 \frac{3}{4}$ gallons of water. The bucket is $\frac{5}{8}$ full. How much water is in the bucket?
16. Jacob's favorite movie is $1 \frac{5}{6}$ hours long. He says he has watched the movie $5 \frac{1}{2}$ times. If that is true, how many hours has Jacob spent watching the movie?
\qquad

Class Activity

CA CC Content Standards 5.NF.1, 5.NF.2, 5.NF.4,
5.NF.4a, 5.NF.5, 5.NF.5a, 5.NF.5h, 5.NF. 6 Mathematical Practices MP.1, MP.2, MP.3, MP.6, MP. 8

Compare Multiplication and Addition

These fraction bars show how we add and multiply fractions.

Add

| $\frac{1}{5}$ | $\frac{1}{5}$ |
| :---: | :---: | :---: | :---: | :---: | Take $\frac{2}{5}$ of the whole

Multiply $\frac{\text { Then take } \frac{3}{5} \text { of each fifth. }}{\text { Conele }}$

1. Which problem above has the greater answer?
2. Circle the problem that will have the greater answer. Then solve.

$$
\frac{2}{7}+\frac{3}{7}=\frac{3}{7} \cdot \frac{2}{7}=
$$

\qquad
3. The fractions in the problems at the right have different denominators.

$$
\frac{1}{6}+\frac{3}{4}=\quad \frac{3}{4} \cdot \frac{1}{6}=
$$

\qquad problem Circle the that will have the greater answer. Then solve.

- Compare Fraction and Whole-Number Operations

Tell whether the answer will be less than or greater than the red number.
4. $a+b$
5. $a-b$
6. $b \cdot a$
7. $\frac{a}{b}+\frac{c}{d}$
8. $\frac{a}{b}-\frac{c}{d}$
9. $\frac{c}{d} \cdot \frac{a}{b}$
10. How is multiplying fractions different from multiplying whole numbers?
than 1.
All of the fractions are less than 1.

Comparison Problems with Mixed Operations

Amber, a very fit snail, moved $\frac{7}{9}$ yard in an hour. She challenged the other snails to try to do better.

Write how far each snail went.
11. Willy moved $\frac{4}{5}$ as far as Amber.
12. Dusty went $\frac{1}{3}$ yard less than Amber. \qquad
13. Pearl went twice as far as Amber.
14. Casey moved $\frac{4}{9}$ yard more than Amber.
15. Minnie moved half as far as Amber.
16. Make up your own question about another snail, Shelly.

Ask a classmate to solve it.
\qquad
\qquad
\qquad

Properties and Fractions

Commutative Property of Multiplication

$\frac{a}{b} \cdot \frac{c}{d}=\frac{c}{d} \cdot \frac{a}{b}$
Look at the proof of the Commutative Property below.

$$
\begin{aligned}
\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}=\frac{c \cdot a}{d \cdot b}= & \frac{c}{d} \cdot \frac{a}{b} \\
& \text { Step 1 } \\
& \text { Step 2 }
\end{aligned}
$$

17. Explain why each step is true.

Step 1 \qquad
Step 2 \qquad
Step 3 \qquad

VOCABULARY Associative Property Distributive Property

Properties and Fractions (continued)

Associative Property of Multiplication

$$
\frac{a}{b} \cdot\left(\frac{c}{d} \cdot \frac{e}{f}\right)=\left(\frac{a}{b} \cdot \frac{c}{d}\right) \cdot \frac{e}{f}
$$

Look at the proof of the Associative Property below.

$$
\begin{gathered}
\frac{a}{b} \cdot\left(\frac{c}{d} \cdot \frac{e}{f}\right)=\frac{a}{b} \cdot \frac{c \cdot e}{d \cdot f}=\frac{a \cdot(c \cdot e)}{b \cdot(d \cdot f)}=\frac{(a \cdot c) \cdot e}{(b \cdot d) \cdot f}=\frac{a \cdot c}{b \cdot d} \cdot \frac{e}{f}=\left(\frac{a}{b} \cdot \frac{c}{d}\right) \cdot \frac{e}{f} \\
\text { Step 1 Step 2 Step 3 Step 4 }
\end{gathered}
$$

18. Explain why each step is true.

Step 1

\qquad
Step 2 \qquad
Step 3 \qquad
Step 4 \qquad
Step 5 \qquad

Distributive Property

$$
\frac{a}{b} \cdot\left(\frac{c}{d}+\frac{e}{f}\right)=\frac{a}{b} \cdot \frac{c}{d}+\frac{a}{b} \cdot \frac{e}{f}
$$

For example, the Distributive Property tells us that
$\frac{1}{2} \cdot\left(\frac{2}{3}+\frac{1}{4}\right)=\frac{1}{2} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{1}{4}$
19. Find the value of $\frac{1}{2} \cdot\left(\frac{2}{3}+\frac{1}{4}\right)$ by adding inside the parentheses first and then multiplying.
20. Find the value of $\frac{1}{2} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{1}{4}$ by multiplying and then adding.
\qquad
21. How do your answers to Exercises 19 and 20 compare?

Name

Mixed Practice

Find the value of the expression.
22. $\frac{4}{5} \cdot \frac{3}{7}$ \qquad
24. $6 \cdot 1 \frac{1}{3}$ \qquad
26. $1 \frac{1}{2}+\frac{2}{3}$ \qquad
23. $\frac{4}{5}-\frac{3}{7}$ \qquad
25. $6+1 \frac{1}{3}$
27. $1 \frac{1}{2} \cdot \frac{2}{3}$
29. $\frac{5}{8}+\frac{8}{5}$

Write an equation. Then solve.

30. Daniel puts some wheat flour into an empty bowl. Then he adds $\frac{2}{3}$ cup rye flour to make a total of $2 \frac{5}{12}$ cups of flour.
How much wheat flour is in the bowl?
31. Mañuela has a bag containing $5 \frac{1}{3}$ cups of sugar. She uses $\frac{1}{8}$ of the sugar in a recipe. How much sugar does she use?
32. Ashanti has a bag that contains $4 \frac{1}{4}$ cups of rice. She uses $\frac{2}{3}$ cup. How much rice is left in the bag?
\qquad
33. Seth's route to school is $1 \frac{3}{10}$ miles long. He has walked $\frac{4}{5}$ mile so far. How much farther does he have to go?
34. Mara's walk to school is $1 \frac{2}{5}$ miles. She is $\frac{5}{8}$ of the way there. How far has she walked so far?

Class Activity

Add, Subtract, Compare, and Multiply

The fraction box to the right shows the same two fractions compared, added, subtracted, and multiplied.

Complete the fraction box.

	$\frac{1}{3}$ and $\frac{1}{6}$
$>$	$\frac{1}{3}>\frac{1}{6}$ or $\frac{2}{6}>\frac{1}{6}$
+	$\frac{1}{3}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}$
-	$\frac{1}{3}-\frac{1}{6}=\frac{2}{6}-\frac{1}{6}=\frac{1}{6}$
\cdot	$\frac{1}{3} \cdot \frac{1}{6}=\frac{1}{18}$

	$\frac{2}{5}$ and $\frac{7}{10}$
$>$	
+	
-	
.	

2.

	$\frac{3}{5}$ and $\frac{4}{7}$
$>$	
+	
-	
-	

What's the Error?

Dear Math Students,

One of my friends said that he would give $\frac{1}{2}$ of his sandwich to me and $\frac{1}{2}$ of his sandwich to my sister. My sister said, "But then you won"t have any left for yourself." This doesn' \dagger make sense to me. I know that $\frac{1}{2}+\frac{1}{2}=\frac{2}{4}$. My friend should have plenty left for himself. Did I do something wrong? What do you think?

Puzzled Penguin

3. Write a response to Puzzled Penguin.
\qquad
\qquad
\qquad

Word Problems with Mixed Operations

Solve.
Show your work.
4. Yesterday Mr. Swenson made $2 \frac{3}{4}$ quarts of strawberry jam and $1 \frac{1}{8}$ quarts of raspberry jam. How much more strawberry jam did he make than raspberry?
5. Today Mr. Swenson is making $\frac{2}{5}$ quart of grape jelly. He will give $\frac{1}{2}$ of this amount to his neighbor. How much jelly will the neighbor get?
6. Mr. Swenson is also making $2 \frac{1}{6}$ quarts of cherry jelly and $3 \frac{1}{12}$ quarts of orange jelly. He will mix the two kinds together. How much of this mixed jelly will he have?
7. Yesterday Mr. Swenson made $\frac{7}{10}$ quart of blueberry jam. His family ate $\frac{1}{10}$ of it. How much of the blueberry jam is left?
8. Suppose Mr. Swenson has jars that hold $\frac{5}{6}$ quart, jars that hold $\frac{3}{4}$ quart, and jars that hold $\frac{2}{3}$ quart. Which size holds the most? Which size holds the least? How do you know?
9. Mr. Swenson made $6 \frac{2}{3}$ quarts of jam last weekend. This weekend he plans to make $1 \frac{1}{2}$ times this much. How much jam will he make this weekend?

Predict and Multiply

Predict whether the product will be greater than, less than, or equal to the second factor. Then compute the product.

1. $\frac{2}{5} \cdot \frac{3}{4}=x$
Predict: $x \bigcirc \frac{3}{4}$
2. $\frac{6}{6} \cdot \frac{3}{4}=x$
Predict: $x \bigcirc \frac{3}{4}$
Compute: $x=$ \qquad
3. $\frac{3}{3} \cdot 2 \frac{1}{2}=x$
4. $2 \frac{2}{3} \cdot 2 \frac{1}{2}=x$
Predict: $x \bigcirc 2 \frac{1}{2}$
Compute: $x=$ \qquad
5. $1 \frac{3}{7} \cdot \frac{3}{4}=x$
Predict: $x \bigcirc \frac{3}{4}$
Compute: $x=$ \qquad
6. $\frac{7}{8} \cdot 2 \frac{1}{2}=x$
Predict: $x \bigcirc 2 \frac{1}{2}$
Compute: $x=$ \qquad
7. $\frac{9}{10} \cdot 5=x$

Predict: $x \bigcirc 5$
Compute: $x=$ \qquad
9. $\frac{10}{10} \cdot 5=x$

Predict: $x \bigcirc 5$
Compute: $x=$ \qquad

Generalize

Complete the statement with greater than, less than, or equal to.
10. Multiplying any number, n, by a factor less than 1 gives a product \qquad n.
11. Multiplying any number, n, by a factor equal to 1 gives a product \qquad n.
12. Multiplying any number, n, by a factor greater than 1 gives a product \qquad n.

Multiplying a fraction by a fraction equal to 1 gives an equivalent fraction. It is the same as multiplying both the numerator and denominator by the same number.

$$
\frac{4}{7}=\frac{4}{7} \cdot \frac{3}{3}=\frac{12}{21} \quad \frac{4}{7}=\frac{4 \cdot 3}{7 \cdot 3}=\frac{12}{21}
$$

Multiply the fraction by a factor equal to 1 to create an equivalent fraction.
13. $\frac{4}{5}$
14. $\frac{3}{11}$
15. $\frac{5}{8}$

Name

Predict and Solve

Solve.

16. A box of granola weighs 18 ounces. A box of corn flakes weighs $\frac{7}{9}$ as much as the granola.

Do the corn flakes weigh more or less than 18 ounces?
\qquad
How much do the corn flakes weigh?
\qquad
17. A rectangle has length $3 \frac{1}{4}$ feet and width $1 \frac{1}{3}$ feet. Is the area of the rectangle greater or less than $3 \frac{1}{4}$ square feet?
\qquad
What is the area of the rectangle?
\qquad
18. The number of students on the football team is $1 \frac{3}{4}$ times the number on the basketball team. There are 16 students on the basketball team.

Are there more or fewer than 16 students on the football team?
\qquad
How many students are on the football team?
19. It's $9 \frac{4}{5}$ miles from Justin's house to the art museum.

The distance to the history museum is $\frac{9}{10}$ this far.
Is the history museum more or less than $9 \frac{4}{5}$ miles from Justin's house?

How far from Justin's house is the history museum?

Explore Fractional Shares

There are 4 people in the Walton family, but there are only 3 waffles. How can the Waltons share the waffles equally?

Divide each waffle into 4 pieces.
Each person's share of one waffle is $\frac{1}{4}$.

Since there are 3 waffles, each person gets 3 of the $\frac{1}{4}$ s, or $\frac{3}{4}$ of a whole waffle.
$3 \div 4=3 \cdot \frac{1}{4}=\frac{3}{4}$

1. Suppose there are 5 people and 4 waffles.

What is each person's share of 1 waffle? \qquad
What is each person's share of 4 waffles? \qquad
Complete the equation: $4 \div 5=$ \qquad - \qquad $=$ \qquad
2. Suppose there are 10 people and 7 waffles.

What is each person's share of 1 waffle? \qquad
What is each person's share of 7 waffles? \qquad
Complete the equation: $7 \div 10=$ \qquad $\cdot \quad=$ \qquad

Complete.

3. $5 \div 6=$ \qquad - \qquad $=$ \qquad
4. $4 \div 9=$ \qquad - \qquad $=$ \qquad

Give your answer in the form of an equation.

5. How can you divide 7 waffles equally among 8 people?
\qquad
6. How can you divide 39 waffles equally among 5 serving plates?
7. Discuss why this equation is true for any whole numbers n and d, except $d=0$.

$$
n \div d=\underbrace{n \cdot \frac{1}{d}}_{n \text { unit fractions } \frac{1}{d}}=\frac{n}{d}
$$

Divide by a Unit Fraction

8. How many $\frac{1}{8}$ s are there in 1 ? Write a division equation to show this.

9. How many $\frac{1}{8}$ s are there in 3 ? Write a division equation to show this.

10. Why can you also use the multiplication equation
$3 \cdot 8=24$ to show how many $\frac{1}{8}$ s are in 3 ?
\qquad
\qquad
11. How many $\frac{1}{4}$ s are there in 5 ? Write a division and a multiplication equation to show this.

\qquad -
12. Complete the equation. w and d are whole numbers and d is not $0 . w \div \frac{1}{d}=$
Write a division equation. Then solve.
Show your work.
13. Olivia made 9 sandwiches and cut each one into fourths. How many fourths does she have?
\qquad
14. The 10 members of a hiking club will walk 9 miles. Each person will carry the food pack for an equal distance. How far will each hiker carry the food pack?
\qquad
15. Damon has a 6-pound bag of cat food. He feeds his cat $\frac{1}{8}$ pound every day. How many days will the bag last?
16. Jodie and 7 friends share 12 oranges equally. How many oranges does each person get? Give your answer as a mixed number.

Class Activity

Unit Fractions in Action

Karen's 5 grandchildren came to visit for 3 days. Karen found a long roll of drawing paper. She said, "I'll cut this paper into 3 equal parts, and we'll use one part on each day." Then she cut the first part into 5 equal parts so each grandchild could make a drawing. She asked her grandchildren, "What part of the whole roll of paper do each of you have? What math problem is this? Make a drawing so Sammy will understand."
Tommy, the oldest, said, "Today we are using $\frac{1}{3}$ of the whole roll because we have 3 equal parts."

Lucy said, "Then we cut that $\frac{1}{3}$ into 5 equal parts. So we found $\frac{1}{3} \div 5$, a unit fraction divided by the whole number 5."

$$
\frac{1}{3} \div 5
$$

Asha said, "But we have to divide each of the other two thirds into 5 equal parts to find out how many equal parts we have in all. That's like multiplying by $\frac{1}{5}$!"

\section*{| 1 | \vdots | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |}

$\frac{1}{3} \cdot \frac{1}{5}$

Phoebe said, "Oh look, we have 15 equal parts in all. So today we are each using. $\frac{1}{15}$ of the whole roll."

Sammy, the youngest grandchild said, "So dividing by 5 is the same as multiplying by $\frac{1}{5}$ because that also means

$$
\frac{1}{3} \div 5=\frac{1}{3} \cdot \frac{1}{5}=\frac{1}{15}
$$ finding one of five equal parts."

The children said, "So dividing by a whole number w is the same as multiplying by $\frac{1}{w}$."

$$
\frac{1}{d} \div w=\frac{1}{d} \cdot \frac{1}{w}=\frac{1}{d \cdot w}
$$

Solve.
17. $\frac{1}{2} \div 3=\frac{1}{2}$. \qquad $=$ \qquad 18. $\frac{1}{5} \div 2=\frac{1}{5}$. \qquad
\qquad
19. $\frac{1}{3} \div 4=\frac{1}{3}$. \qquad $=$ \qquad 20. $\frac{1}{6} \div 4=\frac{1}{6}$. \qquad $=$ \qquad

Practice Division

$$
n \div d=n \cdot \frac{1}{d}=\frac{n}{d} \quad w \div \frac{1}{d}=w \cdot d \quad \frac{1}{d} \div w=\frac{1}{d} \cdot \frac{1}{w}=\frac{1}{d \cdot w}
$$

21. Describe patterns you see in the equations above.
22. Why is dividing by a whole number the same as multiplying by a unit fraction with that number as its denominator?
23. Why does dividing w by a unit fraction $\frac{1}{d}$ make $w \cdot d$, a number greater than w ?
\qquad
\qquad
24. $3 \div 10=$ \qquad - $\quad=$ \qquad
25. $5 \div 8=$ \qquad $=$ \qquad
26. $4 \div \frac{1}{3}=$ \qquad . ___ $=$ \qquad
27. $7 \div \frac{1}{2}=$ \qquad $=$
\qquad
28. $\frac{1}{2} \div 5=$ \qquad $=$ \qquad
29. $\frac{1}{3} \div 4=$ \qquad

30. For the two problems below, which answer will be greater? Explain.

$$
\frac{1}{3} \div 5 \quad 5 \div \frac{1}{3}
$$

\qquad
\qquad
\qquad
\qquad

Division Situations and Diagrams

1. Consider the division problem $2 \div 5$.

Describe a situation this division could represent.
\qquad
\qquad
Draw a diagram to represent the division. Then find the solution.
2. Consider the division problem $4 \div \frac{1}{3}$.

Describe a situation this division could represent.
\qquad
\qquad
Draw a diagram to represent the division. Then find the solution.
3. Consider the division problem $\frac{1}{4} \div 2$.

Describe a situation this division could represent.
\qquad
\qquad
Draw a diagram to represent the division. Then find the solution.

Class Activity

Division Word Problems

Write an equation. Then solve.

4. One lap around the track is $\frac{1}{4}$ mile. José wants to run 5 miles. How many times must he run around the track?
5. There is $\frac{1}{6}$ of an extra large pizza left over in the fridge. If three friends share the pizza equally, what fraction of a whole pizza will each friend get?
\qquad
6. Oscar's aunt lives 50 miles away. This is 6 .times as far as Oscar's grandfather lives. How far away does Oscar's grandfather live?
7. A banner has a length of 10 feet and an area of 7 square feet. What is the width of the banner?
\qquad
8. Brady has three goldfish. This is $\frac{1}{5}$ times as many as Sam has. How many goldfish does Sam have?
9. Lucy has $\frac{1}{2}$ hour to decorate a dozen cupcakes for a bake sale. How much time can she spend on each cupcake?
10. If $\frac{1}{8}$ pound of uncooked rice makes one serving, how many servings are in a 15 -pound bag of rice?
11. On Wednesday, 72 people watched the softball game. It rained on Friday, so only 18 people watched the game. The number of people who watched on Friday is how many times the number who watched on Wednesday?

Solve Word Problems with Multiplication and Division

Decide whether you need to multiply or divide. Then solve.

1. A turtle crawls 3 yards in an hour. How far will it crawl in 2 hours?

How far will the turtle crawl in $\frac{1}{4}$ hour?
\qquad
2. Emily has 2 tons of sand. She will move it by wheelbarrow to the garden. Her wheelbarrow holds $\frac{1}{10}$ ton. How many trips will she make?
3. Tawana has 3 pounds of nuts. She is using them to fill small bags with $\frac{1}{4}$ pound each. How many bags can she fill?
4. Roberto has a recipe that calls for 4 cups of flour. He wants to use only $\frac{1}{2}$ of the recipe today. How much flour will he need?
5. A picnic jug holds 1 gallon of lemonade. Each paper cup holds $\frac{1}{12}$ gallon. How many paper cups can be filled?
6. It rained on $\frac{2}{5}$ of all the days last month. On $\frac{1}{6}$ of these rainy days, there were thunderstorms. On what fraction of the days last month were there thunderstorms?

VOCABULARY dividend divisor quotient

Generalize Results

In the equations below, a and b are whole numbers greater than 1. $\frac{n}{d}$ işafractipip sbivib w less than $1 . \frac{1}{d}$ is a unit fraction. Answer the questions about the equationdw.wn ti lime not wo

Multiplication

Parts of a Division Problem

7. $a \cdot b=c$

Will c be greater than or less than a ? \qquad wis gltuot alt Hive 16t wot Why?
\qquad
\qquad
8. $a \cdot \frac{n}{d}=c$

Will c be greater than or less than a ? \qquad Why?
\qquad
\qquad

Division

9. $a \div b=c$

Will c be greater than or less than a ? \qquad
 Thegn gil live volt
10. $a \div \frac{1}{d}=c$

Will c be greater than or less than a ? \qquad Why?
\qquad
\qquad
Circle the problem with the greater answer. Do not try to calculate the answer.
11. $4,826 \cdot 581$
$4,826 \div 581$
12. $347 \cdot \frac{1}{72}$
$347 \div \frac{1}{72}$

Predict the Size of the Result

Decide what operation to use, predict the size of the result,

Show your work.

 then solve the problem.13. Lucy spends 4 hours a week babysitting. Her sister Lily spends $\frac{7}{8}$ as much time babysitting. Does Lily babysit for more or less than 4 hours?
\qquad
Now find the exact amount of time Lily babysits.
14. Yoshi has a rope 30 feet long. He must cut it into pieces that are each $\frac{1}{4}$-foot long. Will he get more or fewer than 30 pieces?
\qquad
Now find the exact number of pieces Yoshi will get.
\qquad
15. Carlos can throw a ball 14 yards. His friend Raul can throw $\frac{3}{7}$ of that distance. Is Raul's throw longer or shorter than 14 yards?

Now find the exact length of Raul's throw.
16. An apple orchard covers 12 acres. There is a watering spout for every $\frac{1}{4}$ acre. Are there more or fewer than 12 watering spouts?

Now find the exact number of watering spouts in the orchard.

What's the Error?

Dear Math Students,
I have to divide 5 cups in half for a recipe. Here's what I did:
$5 \div \frac{1}{2}=5 \cdot \frac{2}{1}=10$
I know I did the division correctly, but my answer should be less than 5, not more. Can you explain my mistake and help me fix it?

Your friend,
Puzzled Penguin
17. Write a response to Puzzled Penguin.
\qquad
\qquad
\qquad

Summarize Fraction Operations

18. You have just won a prize on a new quiz show called Quick Thinking. The prize will be n album downloads from an online music store. You have a chance to change your prize if you think you can make it better. The screen shows the choices you have. Which will you choose?
\qquad
19. Suppose $n=6$. How many albums have you won? \qquad
20. Suppose $n=12$. How many albums have you won? \qquad
21. Discuss what you have learned about the size
 of the answers when you mulitiply and divide by whole numbers and by fractions.

Choose the Operation.

Decide what operation to use. Then solve.

1. Hala can ride her bike $7 \frac{1}{2}$ miles in an hour. How far will she ride in 3 hours? How far will she ride in $\frac{1}{3}$ of an hour?
2. Eryn's pet rabbit eats $\frac{1}{12}$ pound of food every day. If Eryn buys rabbit food in 5-pound bags, how many days does one bag of rabbit food last?
3. Mr. Dayton uses 8 cups of flour to make three identical loaves of bread. How much flour is in each loaf?
4. Jonathan can throw a baseball $10 \frac{1}{3}$ yards. His brother Joey can throw a baseball $13 \frac{1}{12}$ yards. How much farther can Joey throw the ball?
5. Kim bought $\frac{3}{8}$ pound of sunflower seeds and $\frac{3}{16}$ pound of thistle seed for her bird feeder. How much seed did she buy in all?
6. Casandra's fish bowl holds $\frac{9}{10}$ gallon of water. It is now $\frac{2}{3}$ full. How much water is in the bowl?

Predict and Solve

7. Marcus plays basketball for 9 hours each week. His friend Luis spends $\frac{5}{6}$ as much time playing basketball. Who plays more basketball?

How much time does Luis spend playing basketball?
8. Stacey's long jump was 10 feet. That is $\frac{5}{6}$ foot longer than Ron's long jump. Did Ron jump more or less than 10 feet?

How long was Ron's jump?

Class Activity

Practice Fraction Operations

Write the answer in simplest form.

9. $7 \div \frac{1}{3}=$ \qquad
10. $\frac{1}{8}+\frac{5}{6}=$ \qquad
11. $\frac{4}{7}-\frac{1}{3}=$ \qquad
12. $2 \frac{3}{5}-2 \frac{6}{35}=$ \qquad
13. $\frac{1}{6}+\frac{2}{9}=$ \qquad
14. $1 \frac{7}{8} \cdot 3 \frac{2}{5}=$ \qquad

Solve.

21. Mr. Jones's students recorded the number of hours they slept last night to the nearest quarter hour. The results are shown on this line plot.
a. What is the range of values for the data (the difference between the greatest value and the least value)?
\qquad
b. Six students slept $8 \frac{1}{2}$ hours. What total number of hours do these six values represent?
\qquad
c. Olivia said, "The longest time value is $1 \frac{1}{2}$ times the shortest time value." Is she correct? Explain.

Name

- Math and Marching Bands

The musicians in a marching band play many different kinds of musical instruments. Each type of instrument represents a part of the whole, which is all of the instruments in the band.

The circle graph below shows the fraction of all of the instruments in a school marching band that are bass drums.

Solve. Use the circle graph above.
Show your work.

1. The marching band has 15 bass drums.

How many instruments altogether are
in the band?

Math and Marching Bands (continued)

Solve. Use the circle graph.

2. How many instruments of each kind are in the band?

3. The total number of clarinets and oboes is the same as the number of what other instrument?
4. Suppose the number of xylophones was doubled and the number of cornets was halved.
a. In simplest form, what fraction of all of the instruments in the band would the new number of xylophones represent?
b. In simplest form, what fraction of all of the instruments in the band would the new number of cornets represent?
c. In simplest form, what fraction represents all of the other instruments in the band?

Review/Test

1. For numbers $1 \mathrm{a}-1 \mathrm{~d}$, without multiplying, use the symbols from the list on the right to indicate the product will compare with the factor. Symbols can be used more than once.

1a. $\frac{13}{4} \cdot \frac{5}{8}=x \quad x \bigcirc \frac{13}{4} \quad x \bigcirc \frac{5}{8}$
1b. $\frac{4}{3} \cdot 6=x$

$x \bigcirc 6$
1c. $\frac{2}{5} \cdot \frac{1}{7}=x$

$x \bigcirc \frac{1}{7}$
1d. $\frac{5}{8} \cdot \frac{7}{7}=x$
$x \bigcirc \frac{5}{8}$
$x \bigcirc \frac{7}{7}$
2. Three packages of trail mix are shared equally between Alycia and her four classmates.

Part A

Each bar represents one package of trail mix. Shade the bars to show how much of each package of trail mix one person will get.

Part B

How much of one package of trail mix will each person get?
Write and solve an equation.

3. For the breakfast buffet, Mr. Walker must equally divide 12 loaves of bread between seven platters. How many loaves of bread are placed on each platter? Write and solve an equation.

Review/Test

4. Elin has $\frac{1}{3}$ hour to warm up for her gymnastics meet. She must complete each of 6 different stretches. She spends an equal amount of time on each type of stretch and she does not take a break. How long, in hours, does she spend on each type of stretch? Write and solve an equation.

5. Ava has two frogs. This is $\frac{1}{3}$ the number of frogs that Heather has. How many frogs does Heather have? Draw a diagram to represent the division. Then write and solve an equation.

6. For a snack, Miss Johnson gives her class graham crackers. She has a package of 20 graham crackers to share equally among eight students. How many graham crackers should each student receive? Explain how you found your answer.

7. For numbers 7a-7d, select True or False for each the product.
7a. $\frac{3}{5} \cdot \frac{2}{7}=\frac{21}{10}$

- True
False
7b. $\frac{2}{9} \cdot \frac{5}{3}=\frac{10}{27}$
- True
- False
7c. $\frac{7}{8} \cdot \frac{5}{9}=\frac{35}{72}$
- True
- False
7d. $\frac{1}{2} \cdot \frac{3}{5}=\frac{4}{10}$
- True
- False

Review/Test

8. Juan needs to measure six cups of flour for a recipe. He only has a $\frac{1}{4}$ measuring cup. How many times must he fill the measuring cup to get six cups of flour?
For numbers 8a-8e, choose Yes or No to tell whether the equation can be used to solve the word problem shown above.
8a. $6 \cdot \frac{1}{4}=$

- Yes
O No
8b. $6 \cdot 4=$
- Yes
No
8c. $1 \cdot \frac{4}{6}=0$
- Yes
O No
8d. $6 \div \frac{1}{4}=$
- Yes
- No
8e. $6 \div 4=$
- Yes
- No

9. Ben has a piece of cord that is 40 feet long. He wants to cut the cord into pieces to tie up the tomato plants in his garden. How many pieces can he cut if each piece is $\frac{1}{2}$ foot long? Draw a diagram to represent the division. Then write and solve an equation to find the solution.
\square
10. Of the fifth grade students, $\frac{15}{20}$ went to the book fair. Of the students who went to the book fair, $\frac{12}{16}$ bought at least one book. What fraction of fifth grade students bought at least one book? Show your work.
11. Marie plants flowers in a planter that is $1 \frac{1}{2}$ feet long and $1 \frac{2}{3}$ feet wide. She plans to cover the entire area with fertilizer. How much area will she need to spread with fertilizer?
\qquad square feet
12. Of the coins in Simone's collection, $\frac{13}{25}$ are quarters. Of these quarters, $\frac{2}{3}$ are state quarters. What fraction of Simone's coins are state quarters?

13. A square Do Not Enter sign has a height and width of $2 \frac{1}{2}$ feet.

Part A

Will the area of the sign be greater than or less than $2 \frac{1}{2}$ square feet? Explain how you know.

Part B

What is the area of the sign? Show your work.

14. Patel drew the area model to help him solve a multiplication problem.

Part A
Use the numbers from the list on the right to complete the area model.

$\frac{3}{5}$

Part B

What is the answer to the problem Patel was working on? Show your work.

Without multiplying, choose the symbol from the box to compare the product on the left with the factor shown on the right.
15. $\frac{4}{5} \cdot \frac{3}{8} \begin{gathered}< \\ > \\ \end{gathered}$
16. $\frac{8}{6} \cdot \frac{2}{3} \begin{gathered}< \\ > \\ =\end{gathered}$
17. $\frac{5}{5} \cdot \frac{3}{8}>\begin{gathered}< \\ >\end{gathered}$
18. Without multiplying, classify each product as being less than $\frac{2}{3}$, equal to $\frac{2}{3}$, or greater than $\frac{2}{3}$. Write the letter of each expression in the correct box.
A $\frac{2}{3} \cdot \frac{1}{5}$
B $\frac{2}{3} \cdot \frac{8}{5}$
C $\frac{2}{3} \cdot \frac{9}{9}$
D $\frac{2}{3} \cdot \frac{6}{1}$
E $\frac{2}{3} \cdot \frac{8}{9}$
F $\frac{2}{3} \cdot 2$

Greater Than $\frac{2}{3}$
19. Hannah wants to divide five oranges equally among four children. She drew a model to find $5 \div 4$. Is Hannah's model correct? Explain your reasoning using words, numbers, and pictures.

20. Axel paints his doghouse using leftover paint. He has two identical walls and two identical sections of roof unpainted. The dimensions of the rectangular wall and roof sections are listed in the table.

Part A

Complete the table by writing the area of one wall and one roof section.

Part	Length (ft)	Width (ft)	Total Area (ft^{2})
Wall	$1 \frac{1}{3}$	$2 \frac{1}{6}$	
Roof	$1 \frac{1}{2}$	$2 \frac{1}{12}$	

Part B

Axel has enough blue paint to cover six square feet. For which part of the doghouse will Axel have enough blue paint-two walls or two roof sections?

